首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   55966篇
  免费   4296篇
  国内免费   1752篇
  2023年   760篇
  2022年   740篇
  2021年   1436篇
  2020年   1841篇
  2019年   2458篇
  2018年   2145篇
  2017年   1526篇
  2016年   1475篇
  2015年   1638篇
  2014年   3153篇
  2013年   3916篇
  2012年   2406篇
  2011年   3195篇
  2010年   2419篇
  2009年   2748篇
  2008年   2956篇
  2007年   2872篇
  2006年   2458篇
  2005年   2221篇
  2004年   1995篇
  2003年   1708篇
  2002年   1475篇
  2001年   1018篇
  2000年   854篇
  1999年   895篇
  1998年   819篇
  1997年   726篇
  1996年   587篇
  1995年   650篇
  1994年   648篇
  1993年   522篇
  1992年   501篇
  1991年   441篇
  1990年   336篇
  1989年   334篇
  1988年   271篇
  1987年   285篇
  1986年   235篇
  1985年   461篇
  1984年   756篇
  1983年   606篇
  1982年   613篇
  1981年   485篇
  1980年   457篇
  1979年   375篇
  1978年   291篇
  1977年   270篇
  1976年   255篇
  1975年   224篇
  1973年   197篇
排序方式: 共有10000条查询结果,搜索用时 484 毫秒
991.
The effect of ethanol on maxi Ca2+-activated K+ channels (BK channels) in GH3 pituitary tumor cells was investigated using single-channel recordings and focusing on intracellular signal transduction. In outside-out patches, ethanol caused a transient concentration-dependent increase of BK-channel activity. 30 mm (1.4‰) ethanol significantly increased mean channel open time and channel open probability by 26.3 ± 9% and 78.8 ± 10%, respectively; single-channel current amplitude was not affected by ethanol. The augmenting effect of ethanol was blocked in the presence of protein kinase C (PKC) inhibitors staurosporine, bisindolylmaleimide, and PKC (19–31) pseudosubstrate inhibitor as well as by AMP-PNP (5′-adenylylimidodiphosphate), a nonhydrolyzable ATP-analogue, but not by the phospholipase C blocker U-73122. Phosphatase inhibitors microcystin-LR and okadaic acid promoted the ethanol effect. The blocking effect was released at higher concentrations of ethanol (100 mm) suggesting a second site of action or a competition between blockers and ethanol. Our results suggest that the effect of ethanol on BK-channels is mediated by PKC stimulation and phosphorylation of the channels which increases channel activity and hence may influence action potentials duration and hormone secretion. Received: 24 July 1996/Revised: 27 December 1996  相似文献   
992.
Prostaglandins are important in signaling pathways involved in modulating the rates of Na+ transport in a diverse group of tissues possessing apical membrane epithelial channels. PGE2 is known to cause either stimulation, inhibition or transient stimulatory changes of Na+ transport. We have continued our studies of frog skins that are known to respond to forskolin and PGE2 with large steady-state increases of transport and have used noninvasive methods of blocker-induced noise analysis of Na+ channels to determine their channel densities (N T ) and open probabilities (P o ). In the absence of exogenous hormones, baseline rates of Na+ transport are especially high in scraped skins (R. pipiens pipiens) studied in the fall of the year. Na+ transport was inhibited by indomethacin and by removal of the unstirred layers of the corium (isolated epithelia) alone suggesting that PGE2 is responsible for the sustained and elevated rates of transport in scraped skins. Changes of transport caused by indomethacin, forskolin or PGE2 were unquestionably mediated by considerably larger changes of N T than compensatory changes of P o . Since cAMP caused no change of P o in tissues pretreated with indomethacin, PGE2 appears in this tissue to serve a dual role, increasing the steady state N T by way of cAMP and decreasing P o by unknown mechanisms. Despite appreciable PGE2-related decreases of P o , the net stimulation of transport occurs by a considerably greater cAMP-mediated increase of N T . Received: 28 February 1996/Revised: 22 August 1996  相似文献   
993.
Abstract: Changes in extracellular levels of acetylcholine (ACh) and choline (Ch) in the striatum of rats were examined by in vivo microdialysis after intraperitoneal injections of drugs. A dopamine D2 antagonist, sulpiride (20 mg/kg), and a muscarinic antagonist, atropine (3.5 mg/kg), increased ACh levels and decreased Ch levels. On the contrary, the D2 agonist (±)-2-( N -phenylethyl- N -propyl)amino-5-hydroxytetralin (N-434; 5 mg/kg) and an anesthetic, pentobarbital (50 mg/kg), decreased ACh levels and increased Ch levels. Perfusion of 10 µ M hemicholinium-3 (HC-3), a Ch uptake inhibitor, through the striatum induced a complete inhibition of ACh release and increased Ch levels in all drug-treated groups. The degree of relative increase in the level of Ch induced by HC-3 differed among the drug-pretreated groups; compared with the control group, the relative increase was larger in the sulpiride- and atropine-treated groups and smaller in the N-434 and pentobarbital-treated groups. Thus, we demonstrated reciprocal relations between extracellular concentrations of Ch and ACh after treatments by drugs. The data suggest that in the striatum, which is rich in cholinergic innervation, the extracellular Ch concentration is to a large extent determined by activity of the cholinergic transmission reflected in high-affinity choline uptake.  相似文献   
994.
Abstract: Oxygen radicals have been implicated in the neurodegenerative and other neurobiological effects evoked by methamphetamine (MA) in the brain. It has been reported that shortly after a single large subcutaneous dose of MA to the rat, the serotonergic neurotoxin 5,6-dihydroxytryptamine (5,6-DHT) is formed in the cortex and hippocampus. This somewhat controversial finding suggests that MA potentiates formation of the hydroxyl radical (HO?) that oxidizes 5-hydroxytryptamine (5-HT) to 5,6-DHT, which, in turn, mediates the degeneration of serotonergic terminals. A major and more stable product of the in vitro HO?-mediated oxidation of 5-HT is 5-hydroxy-3-ethylamino-2-oxindole (5-HEO). In this investigation, a method based on HPLC with electrochemical detection (HPLC-EC) has been developed that permits measurement of very low levels of 5-HEO in rat brain tissue in the presence of biogenic amine neurotransmitters/metabolites. After intracerebroventricular administration into rat brain, 5-HEO is transformed into a single major, but unknown, metabolite that can be detected by HPLC-EC. One hour after administration of MA (100 mg/kg s.c.) to the rat, massive decrements of 5-HT were observed in all regions of the brain examined (cortex, hippocampus, medulla and pons, midbrain, and striatum). However, 5-HEO, its unidentified metabolite, or 5,6-DHT were not detected as in vivo metabolites of 5-HT. MA administration, in particular to rats pretreated with pargyline, resulted in the formation of low levels of N-acetyl-5-hydroxytryptamine (NAc-5-HT) in all brain regions examined. These results suggest that MA does not potentiate the HO?-mediated oxidation of 5-HT. Furthermore, the rapid MA-induced decrease of 5-HT might not only be related to oxidative deactivation of tryptophan hydroxylase, as demonstrated by other investigators, but also to the inhibition of tetrahydrobiopterin biosynthesis by NAc-5-HT. The massive decrements of 5-HT evoked by MA are accompanied by small or no corresponding increases in 5-hydroxyindole-3-acetic acid (5-HIAA) levels. This is due, in part, to the relatively rapid clearance of 5-HIAA from the brain and monoamine oxidase (MAO) inhibition by MA. However, the loss of 5-HT without corresponding increases in its metabolites point to other mechanisms that might deplete the neurotransmitter, such as oxidation by superoxide radical anion (O2??), a reaction that in vitro does not generate 5-HEO or 5,6-DHT but rather another putative neurotoxin, tryptamine-4,5-dione. One hour after administration, MA evokes large depletions of norepinephrine (NE) throughout the brain but somewhat smaller decrements of dopamine (DA) that are restricted to the nigrostriatal pathway. Furthermore, MA evokes a major shift in the metabolism of both NE and DA from the pathway mediated by MAO to that mediated by catechol-O-methyltransferase. The profound and widespread effects of MA on the noradrenergic system, but more anatomically localized influence on the dopaminergic system, suggests that NE in addition to DA, or unusual metabolites of these neurotransmitters, might play roles in the neurodegenerative effects evoked by this drug.  相似文献   
995.
Abstract: The role of the transvesicular protonmotive force in synaptic vesicle recycling was investigated in cultured cerebellar granule cells. The vesicular V-ATPase was inhibited by 1 µ M bafilomycin A1; as an alternative, the pH component of the gradient was selectively collapsed by equilibration of the cells with 10 m M methylamine and monitored with the fluorescent probe Lysosensor Green. Electrical field-evoked exocytosis of d -[3H]aspartate was inhibited by bafilomycin A1 but not by methylamine, indicating that a transvesicular membrane potential rather than pH gradient is required for transmitter retention within vesicles. In contrast, neither compound affected the field-evoked uptake, recycling, or destaining of the vesicle-specific dye FM2-10; thus, vesicles whose lumens were neutral and/or depleted of transmitter could still recycle in the nerve terminal. No exhaustion of d -[3H]aspartate exocytosis was observed when cells were subjected to six consecutive trains of field stimuli (40 Hz/10 s separated by 10 s). In contrast, the release of preloaded FM2-10 was reduced by ∼50%, with each stimulus indicating that unlabeled vesicles with accumulated d -[3H]aspartate were competing with labeled vesicles for exocytosis. As d -[3H]aspartate was accumulated rapidly across the vesicle membrane from the large cytoplasmic pool, the transmitter-loaded but unlabelled vesicles may represent refilled recycling vesicles. FM2-10 destaining and d -[3H]aspartate exocytosis were reduced in parallel at low frequencies, challenging a role for transient vesicle fusion.  相似文献   
996.
Abstract: We have shown that the vertebrate neuropeptide N-acetylaspartylglutamate (NAAG) meets the criteria for a neurotransmitter, including function as a selective metabotropic glutamate receptor (mGluR) 3 agonist. Short-term treatment of cerebellar granule cells with NAAG (30 µM) results in the transient increase in content of GABAAα6 subunit mRNA. Using quantitative PCR, this increase was determined to be up to 170% of control values. Similar effects are seen following treatment with trans-1-aminocyclopentane-1,3-dicarboxylate and glutamate and are blocked by the mGluR antagonists (2S,3S,4S)-2-methyl-2-(carboxycyclopropyl)glycine and (2S)-α-ethylglutamic acid. The effect is pertussis toxin-sensitive. The increase in α6 subunit mRNA level can be simulated by activation of other receptors negatively linked to adenylate cyclase activity, such as adenosine A1, α2-adrenergic, muscarinic, and GABAB receptors. Forskolin stimulation of cyclic AMP (cAMP) levels abolished the effect of NAAG. The change in α6 levels induced by 30 µM NAAG can be inhibited in a dose-dependent manner by simultaneous application of increasing doses of the β-adrenergic receptor agonist isoproterenol. The increase in α6 mRNA content is followed by a fourfold increase in α6 protein level 6 h posttreatment. Under voltage-clamped conditions, NAAG-treated granule cells demonstrate an increase in the furosemide-induced inhibition of GABA-gated currents in a concentration-dependent manner, indicating an increase in functional α6-containing GABAA receptors. These data support the hypothesis that NAAG, acting through mGluR3, regulates expression of the GABAAα6 subunit via a cAMP-mediated pathway and that cAMP-coupled receptors for other neurotransmitters may similarly influence GABAA receptor subunit composition.  相似文献   
997.
Abstract: The NMDA receptor has recently been found to be phosphorylated on tyrosine. To assess the possible connection between tyrosine phosphorylation of the NMDA receptor and signaling pathways in the postsynaptic cell, we have investigated the relationship between tyrosine phosphorylation and the binding of NMDA receptor subunits to the SH2 domains of phospholipase C-γ (PLC-γ). A glutathione S -transferase (GST) fusion protein containing both the N- and the C-proximal SH2 domains of PLC-γ was bound to glutathione-agarose and reacted with synaptic junctional proteins and glycoproteins. Tyrosine-phosphorylated PSD-GP180, which has been identified as the NR2B subunit of the NMDA receptor, bound to the SH2-agarose beads in a phosphorylation-dependent fashion. Immunoblot analysis with antibodies specific for individual NMDA receptor subunits showed that both NR2A and NR2B subunits bound to the SH2-agarose. No binding occurred to GST-agarose lacking an associated SH2 domain, indicating that binding was specific for the SH2 domains. The binding of receptor subunits increased after the incubation of synaptic junctions with ATP and decreased after treatment of synaptic junctions with exogenous protein tyrosine phosphatase. Immunoprecipitation experiments confirmed that NR2A and NR2B were phosphorylated on tyrosine and further that tyrosine phosphorylation of each of the subunits was increased after incubation with ATP. The results demonstrate that NMDA receptor subunits NR2A and NR2B will bind to the SH2 domains of PLC-γ and that isolated synaptic junctions contain endogenous protein tyrosine kinase(s) that can phosphorylate both NR2A and NR2B receptor subunits, and suggest that interaction of the tyrosine-phosphorylated NMDA receptor with proteins that contain SH2 domains may serve to link it to signaling pathways in the postsynaptic cell.  相似文献   
998.
999.
Poly(A) polymerase is responsible for the addition of the adenylate tail to the 3′ ends of mRNA. Using the two-hybrid system, we have identified two proteins which interact specifically with the Saccharomyces cerevisiae poly(A) polymerase, Pap1. Uba2 is a homolog of ubiquitin-activating (E1) enzymes and Ufd1 is a protein whose function is probably also linked to the ubiquitin-mediated protein degradation pathway. These two proteins interact with Pap1 and with each other, but not with eight other target proteins which were tested in the two-hybrid system. The last 115 amino acids of Uba2, which contains an 82-amino acid region not present in previously characterized E1 enzymes, is sufficient for the interaction with Pap1. Both Uba2 and Ufd1 can be co-immunoprecipitated from extracts with Pap1, confirming in vitro the interaction identified by two-hybrid analysis. Depletion of Uba2 from cells produces extracts which polyadenylate precursor RNA with increased efficiency compared to extracts from nondepleted cells, while depletion of Ufd1 yields extracts which are defective in processing. These two proteins are not components of polyadenylation factors, and instead may have a role in regulating poly(A) polymerase activity. Received: 6 January 1997 / Accepted: 27 February 1997  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号